理系のための東大文系数学 2005年 第3問(方程式の解の範囲)

東大数学の過去問には良問が多いですが,直前にセットで解く用に解かずに取っておく人は少なくありません。 ただ,東大模試の問題ももちろん悪くはないのですが,やはりオリジナルの問題は別格です。 そこで理系の皆さんは,東大入試で文系数学として出題されたものの中で,文系数学の問題を解いてみるのはいかがでしょうか? 出題範囲は 数学Ⅰ, A, II, B に限られますが,理系で出されてもおかしくない問題が結構ありますし,仮に出題された場合ちょうど合否を分けるレベルになっていることも珍しくありません。 少しでも本番に近い問題を解いて,東大合格に近付きましょう!

今回は,15 年以上前の文系専用問題を 1 問。

解法は典型的ですが,理系でも出来ない人は少なくない印象です。
2 完を安定させたい人は,こういった問題を余裕で突破できるだけの力をつけておきたいところですね。

問 題

0 以上の実数 s,ts2+t2=1 をみたしながら動くとき,方程式

x42(s+t)x2+(st)2=0

の解のとる値の範囲を求めよ。

2005年 東京大学 前期二次試験 数学(文科) 第3問

以下解答を示しますので,自身でよく考え,答案を書いてからご覧ください。

解 答

s+t=k とおき,(s,t)=(cosθ,sinθ)(0θπ2) とすると,

k=2sin(θ+π4)

であるため k のとりうる値の範囲は 1k2 となる。また s2+t2=1 より 2st=k21 となるから,与えられた方程式は

k2+2x2k(x4+2)=0

と書ける。これを k についての 2 次方程式とみて,これが 1k2 の範囲に実数解をもつような x の範囲を考えればよい。

上の方程式の左辺を k の関数とみて f(k) とすると,k の 2 次方程式 f(k)=0 の判別式は 1k2 でつねに正となる。また f(k)=(kx2)2(2x4+2) であるため,1k2 において f(k) は単調に増加する。よって求める条件は

f(1)0f(2)

であり,これを解くことで (0)x222 を得る。これより,与えられた方程式の解のとりうる値の範囲は

234x234

とわかる。

コ メ ン ト

対称式をうまく使って逆像法の議論に持ち込む手法は,苦手とする受験生が多いこともあり,差がつきやすい内容です。
とはいえ,難しい理論や計算を理解する必要はないため,こうした手法は必ず使えるようにしておきましょう!

また,s+t=k,st=l とおいて kl 平面におけるグラフの交点の話に言い換える解法もあります。
こちらもさほど難しくないので,興味のある人は考えてみてください。

この記事の著者/編集者

この連載について

理系のための東大文系数学

連載の詳細

最新記事・ニュース

more

2023年度は大幅な難化により話題となった東大物理。合格するための学習のポイントを、今までの傾向と対策を踏まえて確認していきます。また、現実的な目標得点についても考えていきます!

東大化学、合格のためには何点を目指すべきなのでしょうか。東大化学の傾向と対策を踏まえながら、現実的な目標得点について考えていきます!

30回 ―これは、東大受験に関係するであろう模試の年間実施回数です。当然ですが、これをすべて受験するのはお勧めしません。東大合格を目指すうえで、特にどの模試を受験するべきなのか、考えます!

目標とすべき点数はどれくらい? 東大が発表している合格者データを確認! 二次試験   合格最低点 二次試験   合格平均点 第一段階選抜 合格最…

斎藤 匡洋 1Picks

実はアドミッションポリシーで明確に示されている 「どうやったら東大に入れるか?」という疑問は、東大受験を考える方なら誰でもお持ちだと思います。そ…

斎藤 匡洋 1Picks

前の記事:模試受験の心得【受験前】 模試は受験したらそれで終わりではありません。むしろ大切なのは模試の受験後,それをどう活かすかです。せっかく受…

 模試はあくまでも“模擬”試験であってその結果で人生が左右される訳ではありません。「どうせ模試なんだし今の実力を試すために特別な対策をせずに特攻…