理系のための東大文系数学 2013年 第2問(放物線の面白い性質)

東大数学の過去問には良問が多いですが,直前にセットで解く用に解かずに取っておく人は少なくありません。 ただ,東大模試の問題ももちろん悪くはないのですが,やはりオリジナルの問題は別格です。 そこで理系の皆さんは,東大入試で文系数学として出題されたものの中で,文系数学の問題を解いてみるのはいかがでしょうか? 出題範囲は 数学Ⅰ, A, II, B に限られますが,理系で出されてもおかしくない問題が結構ありますし,仮に出題された場合ちょうど合否を分けるレベルになっていることも珍しくありません。 少しでも本番に近い問題を解いて,東大合格に近付きましょう!

見る人が見れば「数Ⅲ?」と感じるかもしれませんが,今回もあくまで文系数学の過去問です。
できる人にとっては何でもないのですが,数学が苦手な人にとってはちょっと発想力が要る,という立ち位置にある問題のようです。

東大数学に必要な最低限の思考力が備わっているかどうか,確かめてみてください!

問 題

座標平面上の 3 点

  ${\rm P}(0, - \sqrt{2}), \quad {\rm Q}(0, \sqrt{2}), \quad {\rm A}(a, \sqrt{a^2 + 1}) \quad (0 \leqq a \leqq 1)$

を考える。

(1) 2 つの線分の長さの差 ${\rm PA} - {\rm AQ}$ は $a$ によらない定数であることを示し,その値を求めよ。

(2) ${\rm Q}$ を端点とし ${\rm A}$ を通る半直線と放物線 $y = \displaystyle\frac{\sqrt{2}}{8} x^2$ との交点を ${\rm B}$ とする。点 ${\rm B}$ から直線 $y = 2$ へ下ろした垂線と直線 $y = 2$ との交点を ${\rm C}$ とする。このとき,線分の長さの和

    ${\rm PA} + {\rm AB} + {\rm BC}$

は $a$ によらない定数であることを示し,その値を求めよ。

2013年 東京大学 前期二次試験 数学(文科) 第2問

解 答

(1)

$$
\begin{align}
{\rm PA} - {\rm AQ}
& = \sqrt{a^2 + (\sqrt{a^2 + 1}+\sqrt{2})^2} \\
& \quad \quad - \sqrt{a^2+(\sqrt{a^2+1} - \sqrt{2})^2} \\
& = \sqrt{2a^2 + 3 + 2 \sqrt{2 (a^2+1) } } \\
& \quad \quad - \sqrt{2a^2 + 3 - 2 \sqrt{2 (a^2 + 1)}} \\
& = \left( \sqrt{2a^{2} + 2} +1 \right) - \left( \sqrt{2a^{2} + 2} - 1 \right) \\
& = 2
\end{align}
$$

となるため,${\rm PA} - {\rm AQ}$ は $a$ の値によらず一定値 $\underline{2}$ をとる。$\quad \cdots 答$

(2)

3 点 ${\rm Q, \, A, \, B}$ はこの順に同一直線上に並んでいるから,${\rm B} \left( b, \displaystyle\frac{\sqrt{2}}{8} b^2 \right)$ とおくと,(1) より

$$
\begin{align}
& {\rm PA} + {\rm AB} + {\rm BC} \\
&= ({\rm QA} + 2) + {\rm AB} + {\rm BC} \\
&= {\rm QB} + {\rm BC} + 2 \\
& = \sqrt{b^2+\left( \frac{\sqrt{2}}{8} b^2 - \sqrt2 \right)^2 } + \left( 2 - \frac{\sqrt{2}}{8} b^2 \right) + 2 \\
& = \sqrt{ \frac{2}{64} \left( b^4+16b^2+64 \right) } + \left( 2 - \frac{\sqrt{2}}{8} b^2 \right) + 2 \\
&= \frac{\sqrt{2}}{8} \left( b^2+8 \right) + \left( 2-\frac{\sqrt{2}}{8} b^2 \right) + 2 \\
& = 4+\sqrt{2}
\end{align}
$$

となるため,${\rm PA} + {\rm AB} + {\rm BC}$ は $a$ の値によらず一定値 $\underline{4 + \sqrt{2}}$ をとる。$\quad \cdots 答$

コ メ ン ト

(1) では,とりあえず普通に立てて出てきた厳めしい式を睨む中で,"きっとこの二重根号が外れるのだろう,じゃなきゃ解けない!(あるいは解くのがかなり大変だ!)" と思わなければなりません。
(2) では,点 ${\rm A}$ の座標を式に入れてしまうととても大変で,図形的状況を計算用紙の隅にでも書いて把握し (1) を使おうと思い直す必要があります。
(ちなみに,これらの値が綺麗に一定になる理由は,数学Ⅲ の 2 次曲線で放物線や双曲線の性質を学習した理系の皆さんであれば分からなければいけませんよ!)

前書きの通り,東大入試としては正直 “発想力が必要” というほどの問題ではなく,"普通に解けた" という人も少なくないでしょう。
一方で,このレベルでも思いつけず苦労する人が一定数いるのも事実です。

後者となってしまった人は,"問題の構造から展開・手法を予想する力" "前の小問を誘導として活用しようという精神" の向上を意識して,普段の学習に取り組みましょう!

この記事の著者/編集者

この連載について

理系のための東大文系数学

連載の詳細

最新記事・ニュース

more

2023年度は大幅な難化により話題となった東大物理。合格するための学習のポイントを、今までの傾向と対策を踏まえて確認していきます。また、現実的な目標得点についても考えていきます!

東大化学、合格のためには何点を目指すべきなのでしょうか。東大化学の傾向と対策を踏まえながら、現実的な目標得点について考えていきます!

30回 ―これは、東大受験に関係するであろう模試の年間実施回数です。当然ですが、これをすべて受験するのはお勧めしません。東大合格を目指すうえで、特にどの模試を受験するべきなのか、考えます!

目標とすべき点数はどれくらい? 東大が発表している合格者データを確認! 二次試験   合格最低点 二次試験   合格平均点 第一段階選抜 合格最…

斎藤 匡洋 1Picks

実はアドミッションポリシーで明確に示されている 「どうやったら東大に入れるか?」という疑問は、東大受験を考える方なら誰でもお持ちだと思います。そ…

斎藤 匡洋 1Picks

前の記事:模試受験の心得【受験前】 模試は受験したらそれで終わりではありません。むしろ大切なのは模試の受験後,それをどう活かすかです。せっかく受…

 模試はあくまでも“模擬”試験であってその結果で人生が左右される訳ではありません。「どうせ模試なんだし今の実力を試すために特別な対策をせずに特攻…